The Primitive Wooden Brace
by Ron Pearson

One of the more intriguing, as well as frustrating, areas of brace collecting is the "Primitive" wooden brace. The wooden braces that I have encountered show a great deal of ingenuity and artistry in both design and construction. The frustration is that these tools are rarely marked and, therefore, often impossible to identify as to time or place of origin.

The majority of the early wooden braces employ the use of "bit pads," where the bit is embedded in a removable segment of wood which is then mounted in the chuck end of the bitstock. These bit pads are secured to the bitstock by several methods, the most common being the simple tapered square pad which fits into a corresponding tapered square hole in the chuck and is held by friction. A good example of this design is the brace (figure 1) from the James Wilson chair factory in Taylorstown, Pennsylvania, circa 1840. As you can see, multiple pads were made up to accommodate a variety of bits and other attachments, including a tenoning device. This brace, by the way, came from an auction of the contents of the long-defunct chair factory in Taylorstown back in the 1980's. It is not marked. The brace is in almost new condition, whereas the pads are well-used. This suggests that Wilson made several braces to accept the same bit pads, replacing the braces as their efficiency was destroyed by wear or damage.

Another method of retaining the bit pad in the chuck is the use of a simple thumbscrew, either wood or metal. The tangs of the pads are usually square, though not necessarily tapered. The brace in figure 2 is fitted with a wooden thumbscrew. The round tip of this screw engages a corresponding depression on the tang of each pad. This brace came from a farm auction in Warren, Penn. and is styled along the lines of the Sheffield braces. Whether or not the brace was made there is unknown.

The brace in figure 3 uses a nicely forged iron thumbscrew to retain the pad. This brace is very artistically carved, with gracefully curved arms. The iron work is all beautifully handforged. This brace came from Virginia and has no maker's marks. One question that arises with braces such as this is, "Why did the maker use curved arms?" Other than artistic interpretation, there appears to be no satisfactory explanation. It has been suggested that the curved arm increases the amount of torque transmitted to the bit. Not so.

(continued on page 4)
Collectors of Rare and Familiar Tools Society of New Jersey

President JOSEPH G. HAUCK, Lebanon
Vice President HENRY G. ALLEN, Glen Rock
Secretary BARBARA FARNHAM, Stockton
Treasurer HELEN WHELAN, Murray Hill

The purpose of CRAFTS of New Jersey is to encourage interest in early trades and industries, and in the identification, study, preservation and exhibition of tools and implements used and made in New Jersey as an integral part of our heritage.

Membership in CRAFTS is open to anyone who shares the above interests. Annual dues per person or couple are twelve dollars for the membership year of July 1 through June 30. Membership fees may be sent to the Treasurer: Helen Whelan, 38 Colony Court, Murray Hill, NJ 07974.

CRAFTS of NJ meets at the HOST Masonic Lodge, High Bridge. Take I-78 to Route 31 exit at Clinton. Go north on Rte. 31 two miles to second traffic light at the High Bridge exit. Turn right and go about half a mile to Dennis Ave. Turn left, then straight to the Masonic Lodge (on the left). Tailgate sales in the parking lot begin at 1 P.M.; meeting starts at 2 P.M.

The TOOL SHED

Published five times a year for members of CRAFTS of New Jersey. Editor: Stuart Shippey, 251 Hillside Ave., Chatham, NJ 07928-1732. Managing Editor: Hank Allen, 524 Harristown Rd, Glen Rock, NJ 07452. Articles, especially about early tools and trades, are encouraged and may be sent to the editors. Please send legible hand-written or typed text, or a PC disk with ascii, Word Perfect®, MS-Word® file, or send it by FAX to 201 301-9781 or 201 635-7939 (talk first).

© CRAFTS of New Jersey 1996

CRAFTS Meetings

This is our picnic issue, so we want to show you some highlights of CRAFTS meetings in this space which is usually reserved for speakers' profiles. You'll receive a flyer with details of the September 15 picnic.

The June meeting featured Steve Orbine's spectacular display of indicators and gauges. A portion of his display is shown below. Steve's display included the pocket level and plumb that was on the cover of the June Tool Shed.

Ron Pearson talked about patented American braces at the June meeting and brought some of his rarest braces to display. Included was the only known example of Henry Porter's brace, patented July 7, 1857, which is pictured below. It was the first ratchet device patented, and was operated by two ratchet wheels and a detent (French for a part that stops or releases a movement, as in a clock.)

The April meeting featured Don Peloubet's talk on the work of the wheelwright. Don is pictured below with his wheelwright's bench. There is a slot in the bench that allows the wheel to be completely assembled while the hub is held in a vise at the center of the bench.

Hank Allen

CRAFTS Calendar of Events

July 1 - 1996-1997 membership dues due.

Aug. 31 - ToolShed (Nov. issue) free ad deadline.

Sep. 15 - CRAFTS picnic.

Nov. 10 - CRAFTS meeting, High Bridge, N.J.

Feb. 9, 1997 - CRAFTS meeting, High Bridge, N.J.
First I want to thank you all for your confidence in me. I especially want to thank Jack Whelan and the board of trustees for their continuous work and stewardship, which has produced an organization that is running quite well. Most new presidents, whether they are running a club, a company, or a country, are seldom as fortunate. That does, however, present a different challenge, and that is to keep the good things going while looking for incremental improvements as well as new initiatives to make membership even more worthwhile. One of those ideas after much discussion and work is about to come to pass. If all goes as planned we will have the Tool Shed, a selection of 50 articles from the Tool Shed, available for distribution at the picnic (and for mailing for those who cannot attend). We hope you find it a nice addition to your library.

This organization has had the good fortune to count craftsmen, authors, researchers, and volunteers among its membership who have made large contributions to the club and the understanding of tools. Not everything can be learned from books and this is what makes CRAFTS a unique resource, its membership. I have met many interesting people; CRAFTS has plenty of "characters" with a broad variety of skills, knowledge, and interests that extend beyond "tooldom." I hope that those of you who attend our annual picnic will each make an effort to introduce yourself to someone you don't know and take the time to learn a little about them and their interests.

It has been a long time since I bought my first molding plane. My participation in CRAFTS has been a growth experience due to the people I've met and the various club activities I have been involved in over the years. I have had a good deal of fun and expect to have a lot more, while making discoveries and learning along the way. I have learned one of the most important things, which is how much I don't know (although I've never let that keep me from having an opinion). CRAFTS has many talented members, and there is much yet waiting to be done and discovered. So, pick your spot and dig in!

Welcome to new members: Susan Atwater, Califon; Jerry Cooper, Woodruff, SC; Gary Daku, E.Brunswick; Bob Farrow, Paoli, PA; Albert Kranzusch, Montgomery, AL; Jerry Lemanowicz, Guttenberg; Robert Loughney, Elmwood Park; Gregor & Therese Mszar, Bedford, TX; Daniel Nied, Newton; Frank Sheriff III, Pennsauken; Harold Smith, Sayreville; Robert St. Peter, Alton, IL; Charles Thrower, Allentown, PA; Bob & Barbara Vogel, N.Easton, MA; Thomas Wetzel, Hillburn, NY, and John Wood, Dolores, CO.

Joe Hauck

Meet Your New President
Joe Hauck

Having spent almost every Sunday morning for the past 15 years with Joe Hauck, a close bond has naturally developed. As a result, it has become my task to convey the "legend" of Joe Hauck to all CRAFTS members.

As Joe's childhood in Queens, N.Y. is of no particular relevance to this short biography, we will flash forward to 1975 when Joe moved with his wife Marianne and his two children, Joe Jr. and Chris, to the boro of Lebanon, N.J. In an effort to fill his new home with furniture, the ever-frugal Joe began attending the auctions just across town at Heller's Auction Barn. As many of the pieces were in less than perfect condition, he began seeking tools to perform the necessary repairs.

Joe's first encounter with old tools was at an estate sale, where the "big" planes were $5, and the "little" planes were $4. His purchase of 12 of the "little" ones spurred Joe's interest in what is still his primary tool passion - molding planes. He has continually sought out Philadelphia makers, and after recently purchasing property in the Catskills, is also seeking Hudson and Delaware Valley makers.

Shortly after his first plane purchase, Joe had a chance encounter with Steve Zluky at the Neshanic flea market. Steve, who at the time was our CRAFTS president, educated him about molding planes and, more importantly, introduced him to the CRAFTS organization.

As the result of his close proximity to the High Bridge home of Harry O'Neil, our first auction manager, Joe began assisting in the auction process. After Harry's passing, Joe stepped into this slot, where he has remained. Joe has been the driving force in making our annual auction "THE" tool club auction, with attendees from all over the country.

As the result of a life-long passion as a collector, Joe's general knowledge of all antiques is voluminous. One of my great pleasures has been walking through an antique show with Joe (after the initial "rush" is over) where he has acted as my mentor in all things old and unusual. Even in childhood Joe was an avid collector of coins, stamps, and bugs (no comment!). Due to the recent tool drought at the local flea markets, Joe has resumed his interests in the former two items. More recently he has been seeking old items made of lignum vitae, as well as flower arranger's "frogs" (again no comment!). Marianne's membership in the prestigious Historic Society of Early American Decoration has also spurred a large collection of American painted country tinware.

Joe is presently an industry analyst with AT&T, where he has been employed since 1965. In addition, Joe plays an active role in his community. He has been Lebanon's zoning officer for 18 years, has been a member of the planning board for 8, and is presently the chairman of the sewer authority. Joe is also the official town historian. With his many interests, it is no wonder that his dreams are of an early retirement to his Catskill property, which will allow him the time to pursue these interests.

On June 9, 1996, Joe stepped up from vice president to become our newest CRAFTS president. On behalf of all CRAFTS members, I wish to thank Joe for all of his past efforts, and congratulate him on his promotion.
A less commonly found method of bit pad retention is the "Clothespin" pad. Here, the tang of the pad (figure 4) is divided (carved and/or sawn) into two parallel arms, each of which has a lateral ridge at its tip. This tang fits into the square chuck of the brace (figure 5). The tang arms compress together to allow insertion, then spring into position to secure the pad. To remove the pad, the protruding tips of the tang are squeezed together. This brace also has curved arms.

A fourth method of bit pad retention employs the use of the screw concept. The tang of the bit pad is threaded; the chuck is provided with corresponding internal or female threads. At first blush, this method appears to be overly elaborate. However, once the threading tap and die have been made, the creation of the pads should be relatively easy. The drawback is that the brace can only be used with a clockwise motion. Otherwise, the pad would unscrew. Shown here are two braces that demonstrate this design. The first (figure 6) is a brace with fourteen such threaded pads. The configuration of this brace suggests that it was made in the eighteenth century. The bits mounted in the pads have flat tangs indicative of European or Scandinavian origin. The second brace (figure 7) is handcarved with a rare scallop design and also has a threaded pad and chuck. It, too, is believed to be eighteenth century and European in origin.

An unusual variation of the screw-type pad was used in the construction of the brace shown in figure 8. The pad itself is threaded, but the chuck is not. Instead, a threaded wooden nut (shown disassembled) is employed at the upper end of the chuck to engage the protruding tang threads, thereby locking the pad in place. Again, the arms of this rather crudely made brace are curved. In spite of the number of such examples shown in this article, this is not a common finding! By the way, this brace is dated "1751" on its upper arm.
At least two braces in my collection have spring-retained bit pads. The first example (figure 9) has a relatively large iron spring built into the wall of the chuck. This spring engages a slot in the tang of the bit pad (figure 10) and is actuated by an external button on the chuck. The second example (figure 11), although appearing to be handmade, was actually manufactured in Austria as late as the beginning of the twentieth century. In this case, the steel spring protrudes from the upper end of the chuck opening and has an inward deviation within the chuck to engage a notch on the tang of the bit pad.

As I mentioned at the beginning of this article, it is often very difficult to date primitive wooden braces. For example, such braces have been found in third world countries and may have been created and used well into the twentieth century. The brace shown in figure 14 was found on a farm in Cranberry, Pennsylvania. It is obviously very crude, its appearance suggesting a very early origin. The bit is roughly handforged and is held in place by means of a leather wedge. However, the maker/owner marked this brace, "Pat'd 1890". He probably couldn't afford a newfangled, store-bought patented brace, so he created his own.

As you can see, braces, especially the primitive varieties, hold a particular fascination for me. I hope that I've instilled a little of that fascination in you, too.
DISPLAYING TOOLS - Bud's Tool Room
by Hank Allen

In my library are two notebooks with all 69 back issues of Bud Steere's antique tool catalog. From time-to-time I browse through them, marveling at all the great tools that have passed through Bud's hands. Bud and Vera Steere were featured in "Meet Your Dealers" in the November 1995 ToolShed. In preparing that column I talked with Bud several times. During one of those conversations Bud invited me to see his collection.

So, last April Bill McDougall and I stopped to see the Steeres on our way to the Crane auction in Nashua. We knew that what they call "the collection" was in their home, and we knew Bud has a barn full of tools somewhere else, but we had no idea what to expect. When we arrived Vera treated us to lunch, and then we were on our way to "Bud's Tool Room" in the basement.

The door that greeted us is shown in Photo 1. You can see the doorway-size cooper's jointer to the right of the door. Photo 2 shows the back of the door with its 35 hammers and a triple caliper. With hammers, as with most other categories of tools in the collection, so many examples have passed through Bud's hands that only the best, or those with stories or memories, ever enter the collection.

Photo 3 shows Bill and Bud (on the right) at the plumb bob nook, with axes and travelers all around. The walls of the room are lined with 13/16" rough-sawn, random-width, native pine boards. They are all over 12 inches wide, and Bud put the beads on by hand with an Aaron Smith (1769-1822) side bead plane. Tools are fastened to the wall with reproduction hook head nails. Photo 4 gives a better view of the axes and also shows a circular saw blade that must be 4 feet in diameter. A pinwheel log caliper hangs over the saw blade, and ax handles and patterns lean against it.

Primitive, Sheffield-pattern, and American patented braces are displayed on the wall in Photo 5, with a number of other interesting tools interspersed.

A third wall has floor-to-ceiling shelves interrupted by a section that displays some early bench planes. See Photo 6. Bud used 16d finishing nails to support them. Wooden planes fill the shelves on the left, metal planes fill those on the right. The jointer plane just below the long jointer at the top is by E:TAFT/IN:MENDON, dates to circa 1750, and rates 5 stars in POLLAK. Note the finely crafted handle. Then note that there are some pretty nice handles on the other planes. I believe they're all 18th century.
Shelves cover the top half of the fourth wall and are filled with 18th century wooden planes (including a full shelf of Jo Fuller's planes) and metal planes. I know nothing about metal planes, but those of you who are knowledgeable may be able to recognize some of your favorites in Photo 7. Below the shelves on this wall are drawers and spaces that accommodate other tools: levels, rules, gauges, chisels, squares, knives, boring tools, etc. The scope and quality are unbelievable.

After four hours we left Bud's Tool Room for the living room. There was a display of miniature tools on the mantle, but the focal point in the room was the extraordinary inlay on the lid of an open tool chest. Here were the "sparklers" as Herb Kean would exclaim. A patent model of Miller's patent combination plane with ivory tips is certainly one of the greatest tools in America. A Jo Fuller plane with the "USA" mark, one of only two known, was in a till with several other rare wooden planes. Bud's favorite tools are here, and there is a reason or story that goes with each. By the time we reached the bottom to find four split-bottom planes, each different, we had to be underway.

Thanks, Bud and Vera, for letting me share my memorable visit with ToolShed readers.
Bill Sanford's Tinsmith Tools
by Hank Allen

Bill Sanford wrote about tinsmith Jacob Rude (1858-1933) of Lafayette, New Jersey, in the February Tool Shed. Bill had acquired the tools of an unknown tinsmith at a local farm auction and had subsequently traced them back to Jacob Rude, their original owner. These tools, along with many others, are housed in a standing-seam-roofed garage which Bill has converted to replicate an old tinsmith shop. The interior is lined with whitewashed, roughsawn pine boards.

I wanted to see this shop and its tools. So I asked Bill if I could visit the shop and photograph the tools for this article. He lives in an 1830 house with a larger 1840 addition which he has restored with great respect for its history. In Photo 1 Bill is pictured by the house with a creasing stake from his shop. All of the photos in this article were taken by Charlie Flynn who took the pictures at the Mercer Museum for the February Tool Shed.

The tinsmith worked with tinplate to make the household objects that are collectively called tinware. Tinplate is iron sheet that has been tinned (dipped in molten tin) to reduce oxidation. The process for making tinplate was unique to Germany until late in the seventeenth century when it was brought to England. The first tinware made in this country, about 1750, is attributed to Edward Pattison of Berlin, Connecticut. The area about Berlin and Southington became the tinware center of America. Tinware manufacture relied on tinplate imported from England and Germany as no significant manufacture of tinplate took place in America until an 1890 tariff measure was passed to encourage domestic manufacture. During the Revolution, there was no tinplate available for the army's needs, or for any other domestic manufactures. Sheet iron was the temporary substitute, but tinsmiths suffered from the shortage and had to find other work. In 1856 we imported 8,747 tons of tinplate from England.

Tinsmiths used only hand tools to work tinplate until machines became available after 1804. Early hand tools consisted of a variety of stakes and swedges, mallets, hammers, hand and bench shears, soldering irons, and hollow and solid punches. Stakes are bench-mounted irons on which the tinsmith shapes his work. There are many forms including creasing (Photo 1), beakhorn, blowhorn or funnel, candle mould, needle case, square head, and round head. Photo 2 shows the bevel edge square stake and a raising hammer (not used together). Swedges (as distinct from the top and bottom swages) are bench-mounted anvils with a hinged hammer, and are used for fluting and grooving. Types of swedges include creasing, cullender, and square pan. Photo 3 shows a creasing swedge in use to decorate a sconce. The creasing swedge (and also the creasing stake) can be used to make grooves in which wire can be placed and closed in to reinforce the edges of tinware, such as on pot handles.

Photo 3 also shows the top of a bench in Bill's shop. You can see the 3/4" cast iron bench plate with many openings to receive the posts of stakes and machines. The smaller openings are for stakes. The larger ones are for
machine posts and have sockets 3" deep to provide support. Photo 4 shows another bench displaying, among other things, numerous tinsmith's shears. The bench shears on the left are for heavy tinplate and can be mounted in a bench plate. This bench has a ½" by 2" iron bar fastened to the front of the benchtop which is for bending tinplate; this was done by hand or assisted by a wooden mallet. In the background are the charcoal-burning firepots for heating soldering irons. On the right is a forming machine with its three rollers that shape cylinders, such as stovepipe, and tapered cylinders, such as coffeepot bodies.

Photo 4.

The creasing stake Bill is holding in Photo 1 was made by the J. & E. North Mfg. Co. of Berlin, Connecticut (1825-55). Most early tinsmith hand tools and machines were made in this area, which is consistent with it being the tinware manufacturing center for the country. Another early tool manufacturer was the F. Roys Co. Lyman Wilcox joined this firm in 1834 and the name was changed to Roys and Wilcox. This firm made many of the machines in Bill's collection. He showed me an early Roys and Wilcox broadside that displays these machines.

Calvin Whiting, a partner with Eli Parsons in the tinware business in Dedham, Massachusetts, revolutionized tinware production in 1804 when he invented the first machines to work tinplate: circular shears to cut circles from tinplate, a burring machine to shape the bottom of a piece to receive its sides, a setting down machine to lock two parts together, and a wiring machine to seal reinforcing wire in tinware. All of these were bench mounted and operated by geared hand cranks. The Whiting/Parsons patent was subsequently acquired by Seth Peck.

Seth Peck was a tinsmith who sometime after acquiring the Whiting/Parsons patent began to manufacture and distribute tinsmith machines under his name. Seth Peck & Co. was established in 1832, and in 1833, when Seth's brother and others joined the firm, the name was changed to Peck, Smith & Co. You'll see where this is leading when I tell you that Solomon Stow was the founder of the S. Stow Mfg. Co. In 1870 Samuel Wilcox, then president of Roys and Wilcox, brought the three companies together to form Peck, Stow & Wilcox. This giant company dominated its field and remained in business until 1950!

Photo 5 shows a wiring machine made by Peck, Smith & Co. It was patented by C.H. Raymond on August 15, 1859. Its function is to seal in a reinforcing wire after a turning machine has bent the tinplate to accept the wire. With the earliest machines wire has to be inserted manually. With later machines the wire is inserted automatically. The iron posts of two other machines can be seen on the bench. Bill has a very early machine with a rare wooden mounting post.

Photo 5.

Photo 6 shows a circle cutter, sometimes called a rotary shear, made by Niagra, one of the few major manufacturers not located in Connecticut. This example is in pristine condition with its original pinstriping. In use the center of the tinplate is held between the clamps on the right and positioned for the desired radius. When the crank is turned the two cutting wheels cut the tinplate and rotate it until the full circle is cut.

A stovepipe crimping machine made by the Packham Crimping Co. of Mechanicsburg, Pennsylvania, is shown in Photo 7. This machine crimps one end of a section of stovepipe so that it can be inserted into the opposite end of another section. A larger pipe can also be crimped to fit into a smaller one. You'll note the crimping wheels are helical. This was unique with Packhan and they were famous for this style.
The very dramatic machine in Photo 8 is a grooving machine for locking the joints on stovepipe. Roys & Wilcox is the manufacturer. Once locking joints are folded at the seam and the cylinder shaped a forming machine (Photo 4), the pipe joint, Figure 1a, is placed over the forming (lower) bar. Turning the crank causes a roller to travel along the seam locking it as shown in figure 1b. There were many ways to make seams and several different grooving machines. This is an 18" machine and can lock a 3 foot section by reversing ends.

Photo 9 shows a horizontal disk double seaming machine made by Peck, Stow & Wilcox. This machine completes the third step in making a double seam to attach a base to a cylinder. The single seam is first formed with the burring and setting down machines as shown in Figures 1c and 1d. The work is then placed on the horizontal disk, and the seaming roll is brought to the work with the top crank. The main crank then rotates the seaming roll and disk to double up the seam. This takes two passes as shown in Figures 1e and 1f. Catalogs show several sizes of disks and seaming rolls. Perhaps they were for different sized cylinders?

I'd like to thank Bill Sanford for making this article possible. Bill's primary interest is now thermometers. Perhaps we'll be hearing from him again.

Bibliography
The wooden plane user of years ago was primarily interested in getting the wedge out of the plane for resetting or resharpening. He didn’t always have a vise or the right size mallet handy in order to achieve flawless removal. I’m not sure that he cared terribly about any nicks or dents to the plane that occurred during this process, and he was probably willing to take the risk of an occasional split finial. He did have the advantage that the wedges were in and out of the planes on a regular basis, and were rarely “frozen” as we sometimes find them today. We collectors care a lot about deformity and, consequently, our removal techniques might differ from those of craftsmen of yesteryear.

In the March 1996 Chronicle, Jim Gauntlett asks the provocative question: "Are the rounded ends on molding plane wedges (finials) designed for any reason other than their removal?” I think not. I think that the finial design is basically functional, even though it was used as a sort of signature shape by each maker. Planemakers knew that if the plane was stored and used properly, and the strike on the finial was done at the right angle and momentum, very little damage would be done. As such, Jim gives a removal technique that includes striking the finial. However, in a subsequent issue (June 1996) Charles R. Wright disagrees with this technique and points out that there are many molding planes with their finials partially or completely split away from hitting with a mallet. I certainly can attest to that fact, even though I believe it was through carelessness. Charles recommends one solid blow to the back of the plane. But does this work all the time? I have restored hundreds of planes and can report that many of the various techniques work most of the time, but not without occasional problems. There is, however, a technique that works all of the time, and:

1) does little or no damage to the plane,
2) is relatively quick,
3) doesn’t require much skill,
4) and differentiates between bench plane wedges and molding plane wedges.

Here it is for your consideration:

MOLDING PLANES If you put the wedge in a vise, as shown in Figure 1, and tap the heel of the plane, the wedge will loosen easily. Other techniques hold the plane in the vise (or even in your hand) and tap the finial, but that could lead to “abusive tapping” with the resultant split and deformed finials that we have all found. Here lies the beauty of the technique shown in Figure 1; it’s almost impossible to abuse the plane, particularly if you use a mallet rather than a hammer. However, it’s important that the mallet be hard enough to shock the wedge. DAMPENING the blow too much with a rubber head won’t get the job done.

BENCH PLANES Here, many of the existing techniques work well. Take for instance a smoother. Striking it on the heel, while it lays flat on the bench against a stop, usually is successful. On jacks and fore planes, hitting the strike button (located forward of the throat on the top side) normally will loosen all but a really frozen wedge. If there is no strike button, you will be taking a chance of denting the plane’s body if you don’t use a protective block of wood at the position where the button would normally be. Unfortunately this reduces the shock value of the blow, and if you are dealing with a long jointer (24” or over), you need all the jolt that you can get. However, I have planes that you could hit with a trip hammer (at this position), and not loosen the wedge. Many early crowns without strike buttons have their top surface completely torn up from unsuccessful blows at this location. So, how then?

Gentleness and patience is your first try. Tap the side of the wedge (one side, then the other) until a slight looseness is perceived. Then wiggle the wedge back and forth and upward. Repeat the tapping if necessary. I have rarely had a wedge that couldn’t be loosened in this manner. But, when all else failed, I would put the wedge into a vise, similar to Figure 1, and hit the heel of the plane with a heavy mallet. This never failed!

Where tapered irons are present (either in bench or molding planes) tapping the iron deeper into the plane, to break any friction between the wedge and the iron, sometimes helps. If the wedge is really swollen against the body, even this will not loosen it, and you will have to proceed further as above. If the iron isn’t tapered, you might make it worse by driving it deeper.

I don’t recommend trying to remove a frozen wedge without a vise. But if you have to, remember patience is the byword. Shock and vibration will eventually loosen most anything. The trick is to apply them with care.

Herb Kean
Letters

Chronic Collectimania [ToolShed, April 1996, pages 1, 4, 5]

The ToolShed is certainly a very professional looking publication. I enjoyed the Al Bates article - his sense of humor comes through nicely.

With respect to Herb Kean's Whatsits [Willy Tellus What'sit No. 26, page 12], I suggest that it is one of a type of tool that has been identified to me in years past as a Lathe "Hustler." It's my understanding that it is a tool for rough cutting of large turnings, before shifting to a more refined tool. Such might be porch columns turned from solid wood, and even ships' masts. If that is the case, I think the one in the drawing would be in the upside-down position.

I've had a couple of these over the years, and I think I now have but one, of which I enclose a photo of the business end. The cutting edge of this one is an arc of a circle rather than a straight edge.

Paul Kebabian

Willy Tellus What'sit No. 27 [ToolShed, June 1996, page 16]

Your What'sit No. 27 is a mount cutting plane used in picture framing. I have one stamped "Hamilton's Mount Cutter." See diagram for shape.

John Porritt, Great Britain.

Notice

Cory Amsler, Curator at the Mercer Museum in Doylestown, Pennsylvania, reports that the Museum's annual Tool Discovery Day will be held on November 9, 10 am - 3 pm. For lunch your editor recommends a visit to Maxwell's Restaurant and Victorian Pub.

Auction Schedule

Sept. 28, Gablesville AC, Boyertown, Pennsylvania, Barry Hurchalla's regular monthly auction. Call Barry 610-323-0333 to get on his mailing list.

Sept. 27-28, Holiday Inn, Nashua, N.H., Your Country Auctioneer's Annual Fall Tool Show and Auctions (Listed on the 27th and Catalog on the 28th). Call Lee Murray for information 603-456-3705.

Oct. 11-12, Paw Paw, Michigan. Tom Witte's Fall Tool Show & Auction. Call Tom 616-668-4161.

Buy, Swap, & Sell

CRAFTS members only may have a free 5 line (40 word) ad that is primarily related to the exchange of tools or information. Each additional line (over 5) is $1. Send to: Stuart Shippey, 251 Hillside Ave., Chatham NJ 07928-1732 (FAX 201 301-9781). Ads accepted on a space permitting basis. Please print or type them.

Wanted

Articles and/or pictures for "Displaying Tools." If you have a great display, but don't want to do it alone, call and we'll help. Call Hank Allen 201 444-9440 or write to address on page 2.

SANDUSKY WOOD and METAL PLANES. Also catalogs, advertising, and other tools marked Sandusky. Please send for my want list. John Walkowiak, 3452 Humboldt Ave. S, Minneapolis, MN 55408. 612 824-0785.

Looking for unusual old WOMENS TOOLS 1860-1920. KITCHEN items - cast iron eggbeaters, glass churns and mixers, mechanical nutmeg graters, ice cream scoops, raisin seeders, etc. Also old cast iron child-size sewing machines or very unusual full-size ones, and unusual irons - fluters, combos, swans or other animals, unusual child-size ones. Always have good woodworking tools - rules, wooden planes, good Stanley, etc. - to trade or will buy outright. Carole Meeker Box 169 Rhinecliff, NY 12574. 914 876-7818.

For Sale

#100 Hammacher-Schlemmer Patented Combination Work Bench and Tool Cabinet. Good Condition. Harold Fountain, PO Box 650, Westhampton Beach, NY 11978. 516 288-2279

Large selection of quality tools. PLANES: Ivory tipped R/W Plow, Crown, Molders, Stanley. Goosewing AXES, Bowl ADZES, Cooper's Tools, Hand Forged Tools, etc. Send $1 for list to: Cliff Yaun, 51 Nissen Lane, West Hurley, NY 12491